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Motivation (Natural gas suppliers)Motivation (Natural gas suppliers)Motivation (Natural gas suppliers)

�Damage currently
detectable but not
accurately characterized

�Problems/Difficulties
z Multidirectional stress and

strain (not uniaxial)
z Gradients through

thickness
z Both stress and texture

affect ultrasonic velocity

Third party damage to natural gas pipeline
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OutlineOutlineOutline

�Strategy
�Damage modeling
�Ultrasonic measurements

z Theory
z Elastic Measurements
z Plastic Measurements

�Conclusions
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StrategyStrategyStrategy
�Damage characterization

z Bending
z Dents
z Dents with gouges

�Fracture mechanics models           remaining life

z Dimensional measurements (incomplete information)

�Ultrasonic velocity sensitive to stress, strain, and texture
z Velocity measurements

� Longitudinal
� Shear Horizontal
� Shear Birefringence (Thickness independent)
� Rayleigh (Depth dependence)

z Comparison with established ultrasonic theories

Third Party Damage
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Fracture Mechanics ApproachFracture Mechanics ApproachFracture Mechanics Approach
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Fracture Mechanics Approach to
Evaluating Severity of Third-Party Damage

Fracture Mechanics Approach toFracture Mechanics Approach to
Evaluating Severity of Third-Party DamageEvaluating Severity of Third-Party Damage

Key factors:
z Line pressure during damage and subsequent re-rounding of

pipe

z Localized curvature including membrane stretching and
related wall thinning

z Cracking upon re-rounding to highest service pressure and
during hydrostatic retesting

z Support conditions for the pipeline



7Dent ReroundingDent Dent ReroundingRerounding



8

Unknowns in Dent Shape MeasurementsUnknowns in Dent Shape MeasurementsUnknowns in Dent Shape Measurements

�Can calculate bending strains from out of plane
displacements.

�  Need in plane displacements to calculate
membrane strain.
z  Cannot measure them directly

Known out of plane 
displacement

Unknown in 
plane stretching 
displacement

In plane and out-of-plane displacements in a dented pipe.

Known out of plane 
displacement

Unknown in 
plane stretching 
displacement

Known out of plane 
displacement

Unknown in 
plane stretching 
displacement

In plane and out-of-plane displacements in a dented pipe.
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Ultrasonic Measurement ApproachUltrasonic Measurement ApproachUltrasonic Measurement Approach
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Ultrasonic WavesUltrasonic WavesUltrasonic Waves

Longitudinal or Pressure WavesLongitudinal or Pressure Waves

Shear or Transverse WaveShear or Transverse Wave
(Vertically Polarized)(Vertically Polarized)

Surface Wave (Rayleigh Wave)Surface Wave (Rayleigh Wave)

Shear or Transverse WaveShear or Transverse Wave
(Horizontally Polarized)(Horizontally Polarized)
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Ultrasonic TheoryUltrasonic TheoryUltrasonic Theory

( ) ( )σρ

σρ

σρ

σρ

σρ

σρ

54
2
21

2
12

54400400066
2
21

44400400066
2

12

34200400032
2

32

24200400031
2

31

1400033
2

33

VV

348.13595.1V

348.13595.1V

089.10381.6V

089.10381.6V

786.4
3

4
V

KK

KWCWCGC

KWCWCGC

KWCWCGC

KWCWCGC

KWC
G

BC

−=−

+−+==

+−+==

+−−==

++−==

+++==

Wlmn - texture parameters

KI  - acoustoelastic constants
σ    - tensile stress

2 TD

3 ND

1 RD

2 TD

3 ND

1 RD

L-wave

Shear

Shear
Horizontal

Texture Free

Texture StressModuli



12

Measurement systemMeasurement systemMeasurement system

Rayleigh Wave EMATS
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Arrival time vs. angle for biaxial stress
(Pipe)

Arrival time vs. angle for biaxial stressArrival time vs. angle for biaxial stress
(Pipe)(Pipe)
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Elastic region
(Pipe Measurements)

Elastic regionElastic region
(Pipe Measurements)(Pipe Measurements)
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20” Diameter
3/8” thick
6 feet long

Thermocouple

Biaxial Stress Experiment (Pipe)Biaxial Stress Experiment (Pipe)Biaxial Stress Experiment (Pipe)

Pressurize pipe to create biaxial stress

Longitudinal
Waves

Shear Wave
Birefringence

Rayleigh
Waves

S-H
Waves
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Velocity results of biaxial test (elastic
region)

Velocity results of biaxial test (elasticVelocity results of biaxial test (elastic
region)region)
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Plastic Deformation
(Laboratory Measurements)

Plastic DeformationPlastic Deformation
(Laboratory Measurements)(Laboratory Measurements)
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Birefringence as a function of tensile
stress

Birefringence as a function of tensileBirefringence as a function of tensile
stressstress
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Uniaxial tensionUniaxialUniaxial tension tension
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Shear wave birefringence vs. strainShear wave birefringence vs. strainShear wave birefringence vs. strain

Limitations:
• Stress free
• No texture change
• Known baseline
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Current phase accomplishmentsCurrent phase accomplishmentsCurrent phase accomplishments

�Tensile test
�Pipe measurements

z Shear Birefringence
z Longitudinal
z Rayleigh/Surface
z SH to independently compensate for stress

�PG&E Preliminary Measurements
z Ruptured specimens
z Uniaxial
z Biaxial
z Localized damage
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Plastic Strain Measurement ConceptPlastic Strain Measurement ConceptPlastic Strain Measurement Concept
�Multiple ultrasonic and physical measurements

z Shear Birefringence
z Longitudinal
z Rayleigh/Surface
z SH to independently compensate for stress

�Fracture mechanics models        remaining life

Stress, strain, and texture effects
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Future PlansFuture PlansFuture Plans

�Measure from inside
�Advanced EMATS (size and capability)
�Motion
�Crawler/field test
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ConclusionsConclusionsConclusions

�Ultrasonic measurements being developed for
measuring plastic strain in pipelines

�Multiple measurements required to isolate effects
from:
z Residual stress
z Texture effects
z Unknown baseline

�EMATs well suited for this application
�Provides critical information to damage severity

models
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